Bsc final year physics syllabus 2024 | कितना बदला | bsc 3rd year physics syllabus 2024
bsc 3rd year physics syllabus 2024
Hello dear students
विद्यार्थियों आपके लिए यह आर्टिकल बहुत इंपॉर्टेंट रहेगा |
क्योंकि जो जानकारी आपको इसमें बताई गई है वह जानकारी आपको bsc final year 2024 में होनी चाहिए |
क्योंकि आपके जितने भी डाउट है syllabus से releted यहां पर सभी clear हो जाएंगे ।
क्योंकि अगर आप सिलेबस के अनुसार नहीं पड़ते हैं तो bsc में आप अच्छी Parsetes ( % ) नहीं बना सकते हैं इसलिए आपको syllabus की संपूर्ण जानकारी होना अति आवश्यक होता है
तो हम आपको यहां पर यही जानकारी बताई जाएगी की कि आप का syllabus कैसा होगा संपूर्ण जानकारी मिलेगी | इसलिए आपको आर्टिकल को ध्यान पूर्वक पढ़ना है |
क्योंकि आपके इस आर्टिकल को पढ़ने के बाद syllabus को लेकर दिमाग में कोई भी शंका नहीं रहेगी|
क्योंकि आपको आर्टिकल में आसान शब्दों में सही तरीके से Syllabus के बारे में बताया गया हैं आपको Point wise syllabus के बारे में बताया गया है
जोकि निम्न है।
1. Bsc final (3rd, third ) year 2024 में physics के कितने पेपर व उनके नाम क्या होंगे
2. आपको प्रत्येक पेपर में कितनी कितनी यूनिट होंगी |
3. आपके प्रत्येक पेपर कितने कितने नंबर के होंगे|
4. आपको Paper को Exam में हल करने के लिए कितना समय दिया जाएगा |
5.आपको Bsc final (3rd, third )year में पास होने के लिए कितने Number की आवश्यकता होगी |
6.आपके paper में जो यूनिट होंगी उनमें कैसे टॉपिक होंगे व unit व प्रत्येक paper का क्या नाम है होगा |
प्रिय विद्यार्थियों आपको ये ऊपर दिए गए point के अनुसार Article का अध्ययन करना है जिससे आप अच्छे से सिलेबस के बारे में जान सके |
1. Bsc final (3rd, third ) year में आपके कौन-कौन से सब्जेक्ट होंगे व उनके नाम क्या होंगे |
आपके bsc final year में physics के 3 पेपर होंगे जिनके निम्न नाम होंगे ।
Paper I: Quantum Mechanics and Spectroscopy
Paper II: Nuclear and Particle Physics
Paper III: Solid State Physics
2. आपको प्रत्येक पेपर में कितनी कितनी यूनिट होंगी |
आपके प्रत्येक सब्जेक्ट में यूनिट निम्न प्रकार होगी ।
Physics- में आपके प्रत्येक Paper में 4- 4 Unit ( l,ll,lll, IV, )या फिर section (A,B,C,D, )होंगे |
3. आपका प्रत्येक पेपर कितने कितने नंबर के होंगे|
प्रिय विद्यार्थियों आपको उपरोक्त जानकारी के अनुसार सिलेबस समझ आ रहा होगा अब आपको यह जानने की आवश्यकता है कि आप के प्रत्येक पेपर कितने कितने नंबर का होगा तो आपका प्रत्येक पेपर निम्नानुसार होगा ।
आपके physics के 3 Paper होंगे जिनमें से paper first 33 number
Paper second 33 number
Paper third 34 number
कुल योग 100 नंबर का होगा |
4. आपको Paper को Exam में हल करने के लिए कितना समय दिया जाएगा |
प्रिय विद्यार्थियों आपके जितने भी paper होंगे उन सभी paper को exam में हल करने का समय 3 -3 घंटे का दिया जाएगा |
5.आपको Bsc 3rdyear में पास होने के लिए कितने Number की आवश्यकता होगी |
आपको bsc final year 2024 में सभी पेपरों के कुल योग ( 33+ 33+ 34 =100 ) नंबर में से 36 अंक पास होने के लिए आपको लाने होंगे l
Note- 36 अंक तीनों पेपरों में से 12+12 + 12 = 36 अंक ला सकते हैं
या फिर दो पेपरों में से 36 अंक ला सकते हैं
जैसे कि
(0 ( 33 तक कितने भी ) + 18 + 18 = 36 )
या second paper मे 0-33 तक व first and third paper मे 18 + 18 = 36 अंक ला सकते है।
कुल मिलाकर आप तीनों पेपरों में से 36 अंक ला सकते हैं कहीं से भी pass होने के लिए ।
( paper 1st,+2nd+ ,3rd,- (0 से 33+18+18) , (18+0- से 33+18 ) , (18+18 +0 से 33 )
6.आपके paper में जो यूनिट होंगी उनमें कैसे टॉपिक होंगे व unit व प्रत्येक paper का क्या नाम है होगा |
Bsc final year 2024 में आप के जितने भी Paper होंगे उन सभी पेपरों व यूनिटों के नाम सभी आपको बताए गए हैं |
Bsc final year physics syllabus 2024
आपको जैसे भी Topic हो उन्हे आपको नोट या फिर स्क्रीन सोर्ट ले लेना है।
Paper | - Quantum and mechanism spectroscopy
Unit I: Evolution of quantum physics:
1. Difficulties of classical mechanics to explain: the black-body emission spectrum, specific heat of solids. Plank quanta concept and radiation law, Photo electric effect and Farstein's explanations. Compton effect, De-Broglie hypothesis, diffraction and interference experiments of particle (Davisson-Gernier experiment). 2. Uncertainty principle: position and montentum, angle and angular momentin,
energy and time. Application of uncertainty principle:
(i) Ground state energy of hydrogen atom, (ii) ground state energy of simple harmonic oscillator, (iii) Natural width of spectral lines, (iv) Non-existence of electron in nucleus. Operators linear operators, product of two operators, commuting and non- commuting operators, simultaneous eigen functions and eigen values. orthogonal wavefunctions Herminian operators, their eigenvalues. Hermitian adjoint operators.
eigenvalues and eigenfunctions; expectation values of operators: position, momentum, energy. Ehrenfest theorem and complementarity, Concept of group and phase velocity, wave packet, Gaussian wave packet, bra-ket notation.
Unit II: Schrödinger wave equation and its solutions:
1. Schrödinger wave equation: general equation of wave propagation, propagation of matter waves, time dependent and time-independent Schrödinger equation, wavefunction representation (w), physical meaning of y. properties and conditions on v, postulates of wave mechanics, operators, observable and measurements; probability current density.
2. Time independent Schrödinger equation, stationary state solution, one dimensional problemt particle in one dimensional box, eigenfunctions and eigenvalues, discrete levels, generalization into three dimension and degeneracy of energy levels, concept of a potential well and barrier, step potential, penetration through rectangular barrier, reflection and transmission coefficients, barriers with special shapes (graphical representation), quantum mechanical tunneling (alpha decay).
Unit-III:
Schrödinger equation solutions in special cases
1. Symmetric square well potential, reflection and transmission coefficients, resonant scattering. Bound state problems: particle in one dimensional infinite potential well and finite depth potential well, energy eigenvalues and eigenfunctions, transcendental equation and its solution; Simple harmonic oscillater. Schrödinger equation for simple harmonic oscillator and its solution, eigenfunction, eigenvalues, zero point energy, quantum and classical probability density, parity, symmetric and antisymmetric wave functions with graphical representation.
2. Schrödinger equation in spherical coordinates, Schrödinger equation for one pom in spherical coordinates, separation into radial and angular variables, uno radial equation and angular equation, qualitative discussion of spherical harmonics, series solution and energy cigenvalues, stationary state wavefunction. Wave-functions of H-atom for ground and first excited states, average radius of H-atom, Bohr correspondence principle, orbital
angular momentum and its quantization, commutation relation, eigenvalues and eigenfunctions,
UNIT IV:
H-alom, Atomic and Molecular spectroscopy
1 Energy level derivation for H-atom, quantum features of hydrogen spectra and
hydr ke spectra, Stern-Cierlach experiment, electron in spin magneti
moment, spin-orbit coupling. qualitative explanation of fine structure, Franck-Hertz experiment. Zeeman effect, normal Zeeman splitting. Qualitative understanding about Stark effect.
2. Absorption and emission spectroscopy, its block diagram, brief explanation about function of each elements and it's limitations; single beam spectrophotometer. 3. Molecular spectroscopy: concept of rigid rotator, rotational energy levels. rotational spectra. selection rules, intensity of spectral lines, isotopic effect; Vibrational energy levels, vibrational spectra, selection rules, isotopic effect, effect of anharmonicity in vibrational spectra, vibrational-rotational spectra of CO and HCI molecules.
Paper ।। - nuclear and partical physics
Unit -।
Properties of Nucleus:
Discovery of Nucleus, Rutherford Scattering. Constituents of the Nucleus, Mass. Change. Size. Nuclear Density. Charge Distribution, Hotstadier's experiment.
Dy. Regis Academ
Nuclear Angular momentum. Nuclear Magnetic Dipole Moment, Electric Quadrupole ment, Spin.. Isospin, Wave Mechanical Properties: Parity and Statistics, Classification of Nucle:. Mass Defect and Binding Energy. Packing Fraction, Mass Spectrograph. Nuclear Forces: Properties of Nuclear Forces. Yukawa Meson Theory, Nuclear Potential. Nuclear Models: Segre Chart, Liquid Drop Model, Semi Empirical Mass Formula, Condition of Stability, Fermi Gas Model, Evidence for Nuclear Shell Structure, Nuclear Magic Numbers and Basic Assumptions of the Shell Model.
UNIT-2
Radioactive Decays:
Alpha Decay-Basics of a-Decay Processes, Theory of B-Emission Spectrum, Gammow Factor, Geiger Nuttal Law, Range of Alpha Particles, Betaj Pergy Kinematics for B-Decay. B-Decay Spectrum, Positron Emission, Electron Captan Pauli's Neutrino Hypothesis.
Gamma Decay- Gamma Ray Emission and Kinematics, Internal Conversion
Applications of Radioactivity
Nuclear Fission and Fusion: Nuclear Fission, Spontaneous Fission and Potential Barrier, its Explanation by Liquid Drop Model, Chain reaction, Controlled chain reaction, Four Factor Formula, Nuclear Reactors, Classification of Nuclear Reactor, Uncontrolled Chain Reaction, Nuclear Fusion. Energy released in Nuclear Fusion, Fusion in stars.
Nuclear Reactions: Types of Reactions, Conservation Laws, Kinematics of Reactions, Q- Value, Threshold Energy. Reaction Rate, Reaction Cross-Section.
Unit - 3
Interaction of Nuclear Radiation with Matter:
Energy Loss by Heavy Charged Particles in Matter, Interaction of Electrons with Matter, Range of Charged Particle, Bremsstrahlung, Cherenko Radiation, Gamma Ray Interaction With Matter. Radiation Detectors: Gas filled detector, Avalanche, Geiger Discharge, Ionization Chamber,
Proportional Counter, Geiger Muller Counter, Current mode and Pulse Mode Operation of
Detector.
Particle Accelerators: lon source, Van-de-Graff Accelerator (Tandem Accelerator), Linear Accelerator, Cyclotron. Synchrocyclotron. Betatron, Proton Synchrotron
UNIT. 4
Elementary Particles:
Necessity of high energy to discover elementary constituents.
historical introduction to discovery of elementary particles (electron positron. neutrinos, Univ strange mesons, charm quark, intermediate vector bosons, bottom quark, top quark and ggs boson) Elementary particles and their quantum numbers (charge, spin, parity, isospin, strangeness, etc.), elementary particles included in the standard model. Fundamental Interactions: Four types of fundamental forces. Symmetries and Conservation Laws. Diescrete symmetries C, P, and T invariance. Application of symmetry arguments to particle reactions. Parity non-conservation in weak interaction, CP violation. Quark Model: Flavor symmetries, Gellmann-Nishijima formula, the eightfold way, Quark model. Octet Diagram for Mesons and Baryons, Concept of Quark model, the November Revolution, Baryon Decuplet, Color Quantum Number and Gluons.
Paper lll - solid state physics
Unit I -Bonding in Solids and Crystal structure:
Force between atoms. Ionic bonds, Covalent and metallic bonds, Vander waal's and Hydrogen bonding. Periodicity in lattices, Basis, lattice point and space lattice, Translation vectors. Unit and primitive cell. Crystal systems, Packing fractions for Simple Cubic (SC), Body Centred Cubic (BCC). Face Centred Cubic (FCC) and Hexagonal lattice structures, Bravais space lattices
Crystallography and Diffraction:
Direction. planes and miller indices in a crystal lattice, Reciprocal lattice and its significance, Conversich of SC and FCC structures in reciprocal lattice frame, Concept of crystalline, polycryst and amorphous materials, X-ray diffraction by solids: Laue and Braggs equation, Sturdy, of crystals by X-rays: FWHM, Sherrer formula and Lattice Constants (for simple cubic structure), Electron and Neutron diffraction (qualitative).
Unit II -Band theory of solids:
Formation of bands, Periodic potential and Bloch Theorem, Number of states in the bands. Kroning Penny model, Brilliuon zones, Crystal momentum and physical origin of effective mass. Negative Effective Mass and Holes, Energy dispersion relations: weak and tight binding
Semiconductors:
Energy band Structures in Insulators, Conductors, Semiconductors. Concept of Direct and Indirect band gap in semiconductors. Generation and recombination of charge carriers, Mobility-carriers, Hall Effect in semiconductors: Hall coefficient, Mobility, Charge carrier, concentration, Conductivity and Hall angle.
Unit II - Thermal properties of Materials:
Elastic waves. Phonon. Phonon dispersion relations in monoatomic and diatomic linear lattice. Lattice heat capacity. Classical theory of specific heat, Dulong-Petit's law, Einstein and Debye theory of specific heat of solids and limitations of these models, concept of Thermoelectric Power
Electrical Properties of Materials:
de-Lorentz theory. Sommerfeld's Model, Thermal conductivity. Electrical conductivity, Wideman-Franz relation, Thermionic Emission, Escape of electrons from metals, Hall Effect in Metals, Density of states.
Unit IV -Magnetic properties of Materials:
Classification of Magnetic Materials. Origin of Atomic Magnetism, Classical Langevin Theory of dia and Paramagnetic Domains. Quantum theory of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism. Concept of Domain Wall, Magnetostriction, Heisenberg's Exchange Interaction, Relation between Exchange Integral and Weiss Constant. Supercovity
Experimental features of superconductivity:
Critical Temperature, Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect. Idea of BCS theory (No derivation); Cooper Pair and Coherence length. Josephson Effect (No derivation)
अगर आपको 2024 में अच्छी परसेंटेज बनानी है अच्छी मतलब कि 85 से 90% अंक प्राप्त करना है तो इस वेबसाइट को फॉलो करते रहे ।
क्योंकि इस वेबसाइट पर आपको 2024 मैं होने वाले एग्जाम के लिए इंपॉर्टेंट क्वेश्चन भी मिल जाएंगे |.
प्रिय विद्यार्थियों आशा है कि आप को आर्टिकल की जानकारी पसंद आई होगी कृपया इस आर्टिकल को अपने सभी दोस्तों को शेयर करें
क्योंकि इस आर्टिकल में आपको syllabus से संबंधित सभी जानकारी बता दी गई है ।
अगर आपको syllabus को समझने में कोई भी समस्या होती है तो आप coments करें ।
0 टिप्पणियाँ